Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

نویسندگان

  • Wei Li
  • Thomas Cochell
  • Arumugam Manthiram
چکیده

Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

The Effect of Polyvinylpyrrolidone on the Formation of Copper Nanoplates in Wet-Chemical Reduction Method

In this work, we report synthesis and characterization of copper nanoparticles in polymer matrix by wet-chemical reduction method using ascorbic acid as reducing agent, copper (II) sulfate as metal precursor and polyvinylpyrrolidone k-30 (PVP K-30) as surfactant agent. The reaction was carried out in a high-speed stirring mixture at room temperature under nitrogen atmosphere. Characterization o...

متن کامل

Structural and Optical Properties of Gold Nanoparticles Formed by Wet-Chemical Method

Our aim in this work is the synthesis and study optical and structural properties of gold nanoparticles.Gold (III) chloride trihydratewas taken as metal precursor, ascorbic acid at the presence of an appropriate amount of NaOH as reducing agent and polyvinylpyrrolidonek-30 (PVP K-30) as a stabilizing and capping agent. The reaction was performed in high-speed stirring rate at room temperature.S...

متن کامل

Structural and Optical Properties of Gold Nanoparticles Formed by Wet-Chemical Method

Our aim in this work is the synthesis and study optical and structural properties of gold nanoparticles.Gold (III) chloride trihydratewas taken as metal precursor, ascorbic acid at the presence of an appropriate amount of NaOH as reducing agent and polyvinylpyrrolidonek-30 (PVP K-30) as a stabilizing and capping agent. The reaction was performed in high-speed stirring rate at room temperature.S...

متن کامل

Green Synthesis of Silver Nanoparticles Using Mentha aquatic L Extract as the Reducing Agent

Background: Developing effective methods for the synthesis of bio-compatible and non-toxic nanoparticles is the main goal of nanotechnology. In the most chemical methods, a chemical reducing agent is used to reduce metal ions. But, in chemical methods, the stability of nanoparticles is controversial and synthesis in large sizes is much more difficult. Moreover, there is an incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013